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ABSTRACT

Although correlation filter based trackers have recently
demonstrated excellent performance, they still suffer from
the boundary effects. The cosine window is introduced to
alleviate the boundary affects, which however may result in
poor performance in case of occlusion or fast motion. To ad-
dress this problem, we propose a simple yet effective frame-
work, which builds a spatially attentive model with multiple
features to guide the detection of the correlation filter based
trackers. The proposed method not only can breakthrough the
spatial extent of cosine window, but also can provides prior
information about the target object. Moreover, to model a
robust object prior, we propose a generic strategy for adaptive
fusion and update of multiple features. Extensive experi-
ments over multiple tracking benchmarks demonstrate the
superior accuracy and real-time performance of our methods
compared to the state-of-the-art trackers.

Index Terms— Visual Tracking, Correlation Filter, Spa-
tially Attentive Model, Adaptive Feature Fusion

1. INTRODUCTION

The Correlation Filter (CF) based trackers have attracted wide
attention [4, 5, 6, 3, 7, 8, 9], due to their superior accuracy and
real-time performance benefiting from cyclic shifts model and
ridge regression objective equation. The cyclic shifts model
increases the number of samples, which enhances the dis-
criminative ability of correlation filters. And the form of loss
function makes it possible to get a closed-form solution in
frequency domain with high speed.

Despite all the advantages, the CF trackers still have some
limitations. Bolme et al. [4] indicates that the cyclic shifts
connect the sample’s boundaries and create artifacts that do
not exist at the boundary which is called boundary effect. This
effect undermines discriminative ability of the correlation fil-
ters. To mitigate the boundary effect, the image is multiplied
by a cosine window which sets the values of boundary pixels
to zero. However, the cosine window introduces some new
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Fig. 1. Tracking results of our spatially attentive CF of the
baseline Staple tracker, denoted as StapleSA, and a compari-
son with recent state-of-the-art tracking algorithms Staple [1],
BACF [2], SRDCF [3] on the Jogging-2 and Skiing sequences
from OTB-100.

problems due to its restricted search area, especially with the
challenges of fast motion and occlusion. Both of them lead to
the abrupt motion of the target in two contiguous frames. It
is obvious that the target will be lost, if the range of motion is
larger than the search area of the cosine window.

To eliminate these limitations of fast motion and occlu-
sion, predecessors have done a lot of work. SRDCF [3] ex-
pands the search area while penalizing the filter coefficients of
the boundary area to suppress background information inter-
ference. However, it undermines the closed-form solution of
the correlation filter so that the objective equation can only be
solved by iterative method which drastically retards the speed
of the CF trackers. And [10, 2] propose a new cyclic shift
method on a larger region that contains the target, and then
crops out the block where the target was located as a negative
sample. In addition, [11] propose an adaptive target response
model during the training stage to solve the fast motion and
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Fig. 2. Pipeline of our spatially attentive correlation filter.

occlusion challenge. All of the aforementioned algorithms
focus on eliminating the limitations in the training stage. In
contrast, we find that improvement during the detection stage
is a more straightforward and effective way. The reasons are
as follows. (a) Since fast motion and occlusion occurs in the
detection stage rather than in the training stage, it is more es-
sential to solve this problem in the detection stage. (b) The
improvement in the detection stage does not affect the train-
ing of correlation filter, and it dose not disturb the closed-form
solution.

Furthermore, to obtain more robust features, recent CF-
based methods [8, 9, 1, 7] have taken the strategy of multi-
features fusion. Most existing algorithms use a fixed weight
strategy for feature fusion, such as Staple [1] which merge
the color map and response map of CF with weight of 0.3 and
0.7, respectively. However, this strategy has some drawbacks.
(a) Different sequences have a preference for different fea-
tures. For example, the color feature makes sense when target
and background have a significant difference in color, while
a sequence with no difference in target and background col-
ors may have a preference for other features. It is impossible
to find a fixed weight optimal for all sequences. (b) The tar-
get and background also change during the tracking process,
however, the fixed weight is not robust to these variations.
With the change of target and scene, the fixed weight strategy
based features cannot accurately represent target, which will
result in tracking failure.

To this end, this paper propose a Spatially Attentive Cor-
related Filters (SACF) framework for real-time object track-
ing. As shown in Figure 1, our method has excellent perfor-
mance in occlusion and fast motion situation without break-
ing the closed-form solution of the correlation filter, so as to
achieve superior accuracy with real-time performance. The
main contributions of our work can be summarized as fol-
lows:
• We propose a spatially attentive model to provide spa-

tial guidance during the detection stage, which is sim-
ple yet effective, and without breaking the closed-form
solution(see Figure 2).

• To model a robust object prior, we propose a generic

strategy for multi-features adaptive fusion.
• Extensive experiments demonstrate that our Spatially

Attentive framework is widely applicable to all CF
based trackers and can significantly and steadily im-
prove their performance at low computational cost.

2. PROPOSED APPROACH

2.1. Spatially Attentive Correlated Filters

Before the detailed discussion of our proposed approach, we
first revisit the formulas of the conventional CF trackers. In
the training stage, the goal is to obtain a CF template w that
minimizes the squared error over samples xi and their regres-
sion targets yi,

min
w

∑
i

(wT x̂i − yi)2 + λ‖w‖2 (1)

where λ is a regularization parameter to avoid overfitting, and
x̂i can be obtained from the output of a cosine window C by
x̂i = xi � C, where the symbol � denotes an element-wise
product. However, the cosine window restricts the region of
filter during training and detection stage which results in an
unrecoverable tracking drift on certain categories. Naturally,
the CF tracking performance can be significantly improved
if we can provide the filter with prior information about the
location of the target. Therefore, we propose a framework for
CF trackers that adds spatial attention to the correlation filters
during the detection stage.

In the training stage, we create feature histograms for the
target and background respectively in the first frame and up-
date them in the subsequent frames. In the testing stage, we
calculate the probability for each pixel and get the foreground
and background probability matrix Pf , Pb. The pixel belongs
to target are expected with a high probability in Pf and a low
probability in Pb. Therefore, the probabilities that the pixels
in detection area belong to the target can be expressed as,

P =
Pf

Pf + Pb
(2)

Then we can get a spatial attention based feature map: x
′

i =
xi�P . Noting that the probabilities of the boundary pixels in
matrix P are close to zero, that is to say, the probability matrix
P can also suppress the boundary effect as cosine window.
We can rewrite the objective equation by substituting x

′

i for
x̂i in (1):

min
w

∑
i

(wTx
′

i − yi)2 + λ‖w‖2 (3)

It’s desirable that our proposal does not break the closed-form
solution of the equation, thus the speed of CF tracking is al-
most unaffected.
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2.2. Adaptive Features Fusion

To obtain an object prior which is robust to the variations of
target and background, we propose an adaptive features fu-
sion strategy. In each frame t, we define the formula as:

P =

D∑
d=1

P dωdt (4)

where P d and ωdt denote the feature map and the adaptive
weight of feature d, respectively.

For the ideal feature map, the pixels belonging to target
and background have relatively high and low response scores,
respectively. However, there are some background pixels con-
fused with those from target, which disturb the tracking pro-
cess. We call them as critical pixels. We propose a method
to calculate ωdt by measuring the difference between the re-
sponse scores of target pixels and critical pixels. For a 2-D
feature map Pm×n, we define the discriminating ability α :

α =
1

kθ1

kθ1∑
i=1

pi −
1

kθ2

k(θ1+θ2)∑
j=kθ1+1

pj (5)

where θ1, θ2 denote the ratio of target and critical pixels to all
pixels, respectively. k = m× n denotes the number of pixels
in matrix Pm×n. Arranging the elements of matrix Pm×n
in descending order (p1, p2......pm×n), pi represents the i th
element. Then we can get the normalized weight ωd :

ωd =
αd∑D
l=1 α

l
(6)

Finally, we update the weight ωdt in (4) with a learning rate η
and ωd calculating from Eq. (6),

ωdt = (1− η)ωdt−1 + ηωd (7)

3. EXPERIMENT

In this section, we integrate our framework with three pop-
ular CF trackers (Staple [1], KCF [5], DCF [5]) and have
conducted extensive experiments on two public datsets, OTB-
100 [19] and Temple Color 128 [20]. In the first part we
present the details related to our experiment. In the second
part, we quantitatively evaluate our framework and have a
comparison to state-of-the-art trackers to validate the effec-
tiveness of our framework.

3.1. Experiment Details

Evaluation methodology. All trackers are evaluated accord-
ing to two measures, precision and success, as defined in
OTB-50/OTB-100 [21]. Precision measures the center error
between the tracked bounding box and ground truth. The
common threshold of 20 pixels is used for ranking trackers.
Success is measured as the intersection over union (IoU) of
the tracked bounding box and the ground truth. The trackers

Table 1. Success rates (overlap threshold with AUC) of our
framework-based trackers compared to state-of-the-art CF
trackers without deep features. The first and second highest
rates are highlighted in color. The ∗ denotes speeds from the
original paper, not test on the same platform.

Published OTB100 TC128 FPS

StapleSA ours 0.626 0.537 35.83

Staple[1] 2016 CVPR 0.579 0.5 75.31

KCFSA ours 0.483 0.459 92.79

KCF[5] 2015 PAMI 0.469 0.389 175.59

DCFSA ours 0.452 0.46 127.79

DCF[5] 2015 PAMI 0.432 0.388 350.37

StapleCA[12] 2017 CVPR 0.598 - 35.2∗

LMCF[13] 2017 CVPR 0.568 - 85∗

BACF[2] 2017 ICCV 0.63 0.52 35.3∗

MUSTer[14] 2015 CVPR 0.575 - 4∗

LCT[15] 2015 CVPR 0.562 0.439 27.4∗

SRDCF[3] 2015 ICCV 0.598 0.517 5∗

Table 2. Success rates (overlap threshold with AUC) of our
best performing CF tracker(StapleSA) compared to state-of-
the-art CF trackers based on deep learning. The ∗ denotes
speeds from the original paper, not test on the same platform.

Published OTB100 TC128 FPS

StapleSA ours 0.626 0.537 35.83

CREST[16] 2017 ICCV 0.623 - 1∗

CFNet[17] 2017 CVPR 0.568 - 75∗

ECO[8] 2017 CVPR 0.694 0.612 6∗

C-COT[9] 2016 ECCV 0.686 0.583 0.3∗

DeepSRDCF[18] 2015 ICCV 0.643 0.543 <1

are ranked by the area under the curve (AUC).

Update strategy. We employ the color feature and the tex-
ture feature [22] in our spatially attentive framework with the
initial weights 0.75 and 0.25 respectively. The update rate of
feature fusion η is set to 0.1. The CF template is updated in
the same way as the original trackers.

3.2. Quantitative Results

Ablation research. We conducted experiment on the baseline
method of Staple, as shown in Figure 4. The total improve-
ment of precision and success rate has reached an astonishing
{5.3%, 4.7%} in Staple. The results demonstrate the good
performance of the proposed framework.

2697

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 13,2021 at 10:16:14 UTC from IEEE Xplore.  Restrictions apply. 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

cc
e

ss
 r

a
te

Success plots of OPE - fast motion (39)

Staple_SA [0.547]

Staple [0.541]

KCF_SA [0.510]

DCF_SA [0.477]

KCF [0.456]

DCF [0.416]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

cc
e

ss
 r

a
te

Success plots of OPE - motion blur (29)

Staple_SA [0.577]

Staple [0.541]

KCF_SA [0.496]

DCF_SA [0.484]

KCF [0.460]

DCF [0.439]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

cc
e

ss
 r

a
te

Success plots of OPE - occlusion (49)
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Fig. 3. Average performance on OTB-100 for 4 attributes.
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Fig. 4. Performance comparison on OTB-100 in different
configurations. The suffix CoSA denotes the spatially atten-
tive framework with color feature, FixSA denotes that color
and texture features are fused with fixed weights, Nomerge
denotes the Staple without response merge, AdapSA means
spatially attentive framework with adaptive feature fusion.

We then evaluate the components of the proposed method.
Noting that staple already has a color model in training stage,
thus we take StapleNomerge as a baseline, which can be approx-
imately considered as a version of staple without the color
model. Particularly, (1) StapleCoSA outperforms StapleNomerge,
which demonstrates the effectiveness of the color based spa-
tially attentive framework. (2) StapleCoSA outperforms Sta-
ple, which demonstrates that our spatially attentive frame-
work is more effective than the response merge strategy in
Staple [1]. (3) StapleFixSA outperforms StapleCoSA , which
demonstrates the complementary effect of the texture feature.
(4) StapleAdapSA outperforms StapleFixSA, which demonstrates
the effectiveness of our adaptive feature fusion method.

Evaluation per attribute. While our framework improves
tracking performance in most scenarios, there are certain cat-
egories that benefit more than others. Here we just present the
result of four attributions which are related to the fast motion
and occlusion. On the left of Figure 3, the spatially attentive
based trackers has a significant improvement over the original
one for the attribution of fast motion and motion blur, which
proves that our framework is robust to fast motion. And in the
other two graphs of Figure 3, our framework also achieves
significant improvement in the cases of occlusion and out of
view. This is largely due to the fact that compared to cosine

window, our spatially attentive framework can provide a more
accurate detection position before the detection stage.

Comparison to baselines. We evaluated the performance
of our spatially attentive CF trackers and their baselines on
the OTB-100 and Temple-128 datasets. As shown in Table 1,
our framework has an improvement of {3.7%, 7.0%, 7.2%}
on Temple-128 for the baseline Staple, KCF and DCF, re-
spectively. As for the OTB-100, there are 23 grayscale videos
which undermine performance of the color-based framework.
Furthermore, the KCF and DCF do not have scale estimation,
which also affect the reliability of feature extraction. Despite
these unfavorable factors, there are still {4.7%, 1.4%, 2.0%}
promotion on OTB-100. This further proves the stability and
applicability of our framework for all CF trackers.

Comparison to state-of-the-art trackers. We compare our
spatially attentive CF trackers and their baselines to state-of-
the-art trackers without deep features in Table 1 and compare
our best performing CF tracker (StapleSA) to state-of-the-
art CF trackers with deep features in Table 2. In Table 1,
the tracker StapleSA based on our framework ranked first on
Temple-128 and second on OTB-100. Furthermore, it has
reached the real-time requirements (FPS≥30). When com-
pared to the state-of-the-art methods based on deep learning,
StapleSA still gets the competitive performance while far
exceeding the speed of other algorithms.

4. CONCLUSION

We propose a spatially attentive framework which is applica-
ble for all correlation filter based trackers. The spatial guid-
ance can locate the target precisely before the detection stage,
capacitating CF based trackers more robust to fast motion and
occlusion. And the adaptive feature fusion strategy enables
better representation of features among different videos. Ex-
tensive experiments demonstrate that our framework can sig-
nificantly and steadily improve the performance of CF based
trackers at low computation cost. In addition, our framework
may promote all detection-based trackers, which is subject to
our further experiments to prove.
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