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Abstract—The deep learning based methods have improved the
visual tracking precision significantly. However, the background
distraction and the high precise localization remain challenging
problems. Despite that some methods have fused the deep and
shallow layer features to solve these problems, the existing fusion
methods are still too naive to take the advantage of both the deep
and shallow layer features fully. In this paper, we propose a new
adaptive feature fusion method, called the instance-based feature
pyramid (IBFP) to obtain the discriminative high-resolution
feature, which not only inherits the discriminative information
from the deep layer feature but also keeps the high precision
localization information of the shallow layer feature. For utilizing
the deep and shallow features effectively, we design an instance-
based upsampling (IBU) module to fuse them, and a compressed
space channel selection (CSCS) module to re-weight the feature
channels adaptively. We insert the IBU and CSCS modules in
the Siamese tracker for end-to-end training and testing. By
using the proposed IBU and CSCS modules, we fuse the deep
and shallow features in a series manner. Experiments on large-
scale benchmark datasets demonstrate that the proposed modules
boost the capabilities of distinguishing the targets and the similar
distractors and perform favorably against the state-of-the-art.
Keywords—Siamese tracker, Feature fusion, Visual tracking

I. INTRODUCTION

The recent years have witnessed increasing interest in devel-

oping visual tracking to advance various vision applications.

Benefiting from the development of the deep convolutional

neural network (CNN), the visual tracking precision has

been improved significantly via the powerful CNN features.

However, the background distraction and the high precise

localization are still challenging problems for visual tracking.

Different from the recognition tasks where target labels are

fixed for offline training, visual tracking requires target object

identification by only using the online initial frame. The target

object may become background distractors in other sequences.

It is very important to extract the discriminative instance-

specific features for distinguishing the target and the distrac-

tors. At the same time, the high-resolution features are crucial

for high precise localization. Generally, the deep layer features

are more discriminative but with a lower resolution rate, while

the shallow layer features have a higher resolution. Combining

the deep features and the shallow features is an obvious

method to improve the tracking precision. However, existing

combination methods are very naive to simply concatenate

the shallow and the deep layer features or use these features

separately. These methods cannot take the advantages of both
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Fig. 1. The simple illustration of the proposed instance-based feature pyramid.
The search region features are modulated by the template features and
upsampled with a series manner.

⊕
is the feature fusion operator, which

is concatenation in our experiments.

the discriminative deep feature and the high-resolution shallow

feature sufficiently. By simply concatenating the deep and

shallow features or using these features separately, the siamese

tracker locates the target via the correlation response at the

end of the pipeline. The deep feature cannot offer guidelines

for the high-resolution shallow feature. Different from these

methods, we construct a target-related feature pyramid to fuse

the deep and shallow features for searching the current target

in a coarse-to-fine manner. The discriminative deep feature

can provide useful guidelines to help the tracker locates the

target at a high-resolution level. The simple illustration of our

feature fusion method is in Fig. 1.

In this paper, we propose a new instance-based upsampling

(IBU) method to fuse the shallow and the deep layer features,

which maintain the high-resolution features, as well as the

discriminative information. The IBU module is integrated into

the Siamese network for end-to-end training and inference.

We calculate the depth-wise correlation between the template



and the search region features at a network layer. Then, we

concatenate the response tensor and the original search region

feature and use a transpose convolutional layer to upsample the

concatenated feature. After that, the upsampled feature is fused

with the high-resolution feature to get the output of the IBU

module. In our tracker, we insert the IBU modules between

the features from different stages of the backbone. The final

feature is obtained in a series manner.

For adapting to the different targets, we further propose

a compressed space channel selection (CSCS) module. The

CSCS module compresses the feature space first and calculates

the channel weights in the compressed space via the cross

attention between the template and the search region features.

According to the depth-wise correlation response, the CSCS

module can select the useful feature channels and suppress the

noise channels.

We summarise the main contributions of this work as

follows:

• We propose an efficient module of fusing the deep

and shallow features adaptively according to the current

instance, called the instance-based upsampling module,

which can maintain the high-resolution features, as well

as the discriminative information from the low-resolution

features.

• We propose a compressed space channel selection module

to re-weight the channels of the extracted features accord-

ing to the depth-wise correlation response map, which

can suppress the noise feature channels and emphasize

the reliable channels.

• The experiments conducted on the benchmark datasets

indicate the effectiveness of the instance-based upsam-

pling module and the compressed space channel selection

module in improving tracking accuracy. The proposed

method performs favorably against the state-of-the-art.

II. RELATED WORK

Generic visual object tracking has a significant improvement

in the last several years. Recently, Siamese network based

trackers [2], [21], [43], [44], [36], [22], [10], [25], [42], [1]

have raised much attention due to the good balance of accuracy

and efficiency. In this section, we mainly discuss the Siamese

trackers.

SiamFC [2] propose to use the fully-convolutional Siamese

network to learn a matching metric between the target and

the proposals offline, which achieves high efficiency and

good accuracy. Due to the success of SiamFC [2], many

extensions are proposed. Inspired by the region proposal net-

work, SiamRPN [21] extracts region proposals and utilizes the

bounding box regression to refine the tracking results for high

accuracy localization. Compared with SiamFC [2], via com-

bining the classifier and the regression module, SiamRPN [21]

can speed up the inference stage significantly by avoiding the

multi-scale testing process. Despite the improvement brought

by the region proposal network, SiamRPN [21] tracker is

influenced severely by the distractors. To discriminate the

distractors and the target more effectively, some methods

employ the hard negative mining during the training process

like DaSiamRPN [46], and others use the deeper and wider

backbones to extract the more discriminative features, such

as SiamRPN++ [20] and DWSiam [43]. SiamRPN++ [20]

replaces the AlexNet [19] backbone with the ResNet [14].

Besides, random shifting augmentation is used to suppress the

center bias caused by the padding operation. Since then, very

deep networks are widely used in the visual tracking task.

SiamRPN++ [20] can achieve the state-of-the-art performance,

but pre-setting anchors are needed, which increases the hyper-

parameters. Many experiments prove the tracking results are

severely related to these hyper-parameters of anchors. Inspired

by FCOS [33] and CenterNet [45] in the detection, to reduce

the anchor-related hyper-parameters and improve the tracking

robustness, SiamCAR [12] employ the anchor-free regression

branch to predict the distances from the points to the 4 sides

of the bounding box. The anchor-free tracker is more flexible

to the shape and scale changes. Danelljan et al. [4] employ

the online conjugate gradient method to update the template

filter and the offline trained IOU predictor to get the high

accuracy bounding box. Bhat et al. [3] design and train the

online optimizer based on the meta-learning strategy for the

fast adaptation on the unseen test frames.

However, These works do not use both the shallow and

deep features sufficiently. ATOM [4] only use the layer4

feature of ResNet to locate the target center. SiamCAR [12]

and SiamRPN++ [20] modifies the ResNet backbone to keep

the high resolution on deep layers, and simply concatenates

features from different layers or uses these features separately.

To maintain the high resolution on deep layers, the computa-

tion cost will increase significantly. Based on the observation

above, we propose a new instance-based upsampling module to

combine the shallow and deep features. The proposed module

can use both the shallow and deep features effectively to

locate the target in a coarse-to-fine manner. We further propose

a compressed space channel selection method to adjust the

channel weights of the features, which can suppress some

useless channels and make the feature fusion more flexible.

III. PROPOSED APPROACH

In this section, we review the siameseFC framework first

and present how the proposed module is integrated into the

siamese tracking network. Then, we illustrate the details of the

IBU and the CSCS modules, respectively. At last, we introduce

the prediction head and the training loss.

A. Review of SiameseFC

Generally, siameseFC tracking network is separated into two

parts, the feature extractor, and the correlation manipulation.

The feature extractor f(.) is a CNN model used to extract

the features of the target template in the initial frame and

the search region in the subsequent frames. Assuming the

movement of the target is smooth between two adjacent

frames, siameseFC tracker crops the search region X in the

current frame centered at the target position of the last frame,

which is larger than the size of the target patch. The target
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Fig. 2. The pipeline of our algorithm. We use the Siamese network as the backbone to extract the features of the template and the search region. The
upsampling network is consists of several CSCS modules and IBU modules. After obtaining the upsampled search region feature, we calculate the depth-wise
correlation response between the cropped template feature and the upsampled feature to get the response tensor. Based on this tensor, the prediction head
with the center prediction branch and the regression branch outputs the center scores and the bounding boxes for every point.

patch with little background in the initial frame is cropped

as the template Z. First, the template feature and the search

region feature are extracted via the same feature extractor as

shown in Eq. 1.

Fz = f(Z),Fx = f(X). (1)

Then, the similarity scores between the template and every

position in the search region are calculated via the correlation

manipulation:

S = Fz ∗ Fx. (2)

The position with the maximum score is the predicted target

center.

Considering the visual tracking task needs to distinguish

different targets at the instance level, where both the shallow

features and the deep features are useful, we design the IBU

module to fuse the features from the different layers and

locate the target in a series manner. We further insert the

CSCS module before the IBU module to suppress some noisy

channels. The whole pipeline of our model is shown in Fig. 2.

Next, we will illustrate the IBU module and the CSCS module

in detail.

B. Instance-based Upsampling

For the convenience of explanation, we only illustrate the

first IBU module in Fig. 3. The other IBU module has similar

architecture.

The IBU module takes the cropped deep template feature

T0 ∈ Rh×w×c0 , the deep search region feature U0

x ∈
RH×W×c0 , and the shallow search region feature F1

x ∈
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Fig. 3. The architecture of the proposed instance-based upsampling module
(IBU). We calculate the depth-wise correlation response between the cropped
template feature and the upsampled feature from the previous IBU module
first. Then, we concatenate the response tensor and the input feature U0

x
. A

convolutional layer is used to reduce the channel number by a half. TConv

represents the transpose convolutional layer, which is used to upsample the
search region feature. In the end, we fuse the upsampled feature and the
shallow layer feature by the concatenation operation and a convolutional layer.

RH×W×c1 as the inputs, and outputs the upsampled search

region feature U1

x ∈ RH×W×c1 . It should be noticed that the

input U0

x of the first IBU module is F0

x, while the upsampled

feature from the previous IBU module is used as the input

for the second IBU module. First, the IBU module calculates

the depth-wise correlation between the cropped deep template

feature and the deep search region feature to get a response

tensor R:

R = T0 ∗dw U0

x, (3)

where ∗dw represents depth-wise correlation. R ∈ RH×W×c0

reflects the significance of the target at each channel. Then,

the response tensor R is concatenated with the deep search



region feature U0

x and sent to a convolutional layer to reduce

the channel number. A transpose convolutional layer is used

to obtain the upsampled feature V0

x:

V0

x = TConv(Concat(R,U0

x)), (4)

where the V0

x ∈ RH×W×c1 has the same dimension with the

shallow search region feature U0

x. In the end, the IBU module

fuses the upsampled feature and the shallow search region

feature to get the output:

U1

x = Conv(Concat(V0

x,F1

x)). (5)

The IBU module fuses the deep layer feature and the

shallow layer feature. The channel-wise response map from

the deep layer is used to provide the instance information and

light the meaningful parts of the search region. In our model,

these IBU modules are stacked from the deep to the shallow

layers, which filter out the background gradually and find the

target in a coarse-to-fine manner.

C. Compressed Space Channel Selected

We take the second CSCS module as an example to intro-

duce the operation of the CSCS module. The details of the

module are shown in Fig. 4.

We design the CSCS module to re-weight the channels of

the template feature according to the current search region.

First, a global average pooling layer and a global max pooling

layer are used to extract the average vector and the maximum

vector of the search region. Then, the channel numbers of

the average vector and the maximum vector are compressed

by the fully connected layers. The compressed average vector

and the compressed maximum vector are added to get the

added compressed vector. Then, the channel dimension of the

input template feature is also compressed by a convolutional

layer. The added compressed vector is used as the channel

weights to re-weight the channels of the compressed template

feature. After re-weighting the compressed template feature,

the CSCS module recovers its channel numbers via an extra

convolutional layer. We mark the input template feature with

some background as F1

z ∈ RH×W×c1 . U1

x ∈ RH×W×c1 is

the upsampled search region feature from the previous IBU

module. A1

z ∈ RH×W×d1 represents the adjusted feature in

the compressed space. The output is G1

z ∈ RH×W×c1 . We

can formulize the CSCS module as:

W = conv(gap(U1

x)) + conv(gmp(U1

x)), (6)

A1

z = W ∗dw conv(F1

z), (7)

G1

z = conv(A1

z) + F1

z, (8)

where gap(.) and gmp(.) represent the global average pooling

operation and the global max pooling operation, respectively.

∗dw represents depth-wise correlation.

The CSCS module uses the global information of the current

search region feature to re-weight the channels of the template

feature, which generates a cross channel attention to suppress

the noisy channels.
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Fig. 4. The architecture of the proposed compressed space channel selection
module (CSCS). We use the global average pooling (GAP) and the global
max pooling (GMP) to squeeze the space dimension of the search region
feature, which obtains the average vector and the maximum vector. Then,
three convolutional layers are used to project the template feature, the average
vector, and the maximum vector to a compressed space. in this compressed
space, we add the average vector and the maximum vector first. Then, we
calculate the depth-wise correlation between the template feature and the
added vector to get the response tensor A1

z
. The response tensor is projected

by another convolutional layer and added with the input template feature F 1
z

.

D. Prediction Head

The prediction head has two branches. one branch outputs

the center prediction score which represents how close the

point nears the target center. A higher center score means

the model predicts the corresponding point closer to the real

target center. Another branch provides the bounding boxes

prediction at each anchor point. The output of this branch is an

H×W × 4 tensor whose four channels represent the distances

from the corresponding anchor point to the four sides of the

predicted bounding box.

During the training phase, we take the gaussian function as

the center prediction label. Different from the SiamCAR [12]

which uses the classification score and the centerness score to

predict the target center, we locate the target center by only

one response map. To suppress the influence of the simple

negative samples, we use a focal hinge MSE loss to learn the

center prediction. We define the focal hinge MSE loss,

ℓc =

{

yγc ∗ |sc − yc| , yc ≥ τ

α ∗max(0, sc) , yc < τ,
(9)

where α and γ are used to adjust the importance of the negative

samples and the positive samples, respectively. τ is the hinge

loss threshold, which is used to suppress the influence of the

simple negative samples. sc and yc are the center prediction

score map and the center score label. By using the focal hinge

MSE loss, we can balance the positive and negative samples

and reduce the side effect from the large quantities of simple

negative samples.

The bounding box regression labels are the distances from

the anchor points to the four sides of the groundtruth box. We

use the L1 loss to learn the regression,

ℓb =
1

N

N
∑

i=1

∑

j

|pij − gj |, j ∈ l, t, r, b (10)

where pi and gi are the coordinates of the predicted bounding

box and the groundtruth, respectively. j ∈ l, t, r, b represents

the left, top, right, and bottom coordinates. N is the total
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Fig. 5. Anchor points used to learn the bounding box regression. The red
box and the red point are the groundtruth box and the target center. Anchor
points inside the blue area are selected to train the bounding box regression.
(a) shows the point selection method of SiamCAR [12]. (b) is our method to
select the samples. (c), (d) are two kinds of compared methods.

number of the samples for learning the bounding box re-

gression. We define the regression samples according to the

size of the groundtruth box. Instead of using all the anchor

points inside the groundtruth box like SiamCAR, we argue that

some points inside the groundtruth box are the background,

especially when the points near the four sides of the box, so we

only use the points near the target center to learn the bounding

box regression. Considering the aspect ratio of the bounding

box, we set two different distance thresholds for the horizontal

and vertical directions, as shown in Fig. 5(b).

E. Online Updating

For adapting to the change of the target during the tracking

process, the template feature should be updated. However, The

updating can bring the accumulative error and cause tracking

shift, so we need to keep the initial template to suppress the

shifting. Inspired by the updating method of ATOM [4] tracker,

we use an online branch to calculate the online response map.

We update the online template every fixed frames or when

hard negatives occur. The hinge MSE loss is used to supervise

the template updating. We refer the readers to ATOM [4]

for more details about the online updating. Then, the online

response map and the center prediction map are mixed by a

fixed weight:

s = w ∗ sc + (1− w) ∗ su, (11)

where sc and su are the center prediction map and the online

response map, respectively. w is the mix weight.

36 x 36 x 256

3x3 Conv
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GroupNrom
group=32

ReLU

36 x 36 x 128

x 4

3x3 Conv
s=1, p=1

36 x 36 x 1

36 x 36 x 256

3x3 Conv
s=1, p=1

GroupNrom
group=32

ReLU
x 4

3x3 Conv
s=1, p=1

36 x 36 x 4

Fig. 6. The architecture of the prediction head. ’s’ and ’p’ represent stride
and padding parameters.

IV. EXPERIMENTS

In this section, we illustrate our implementation details and

evaluate the proposed tracker IBFP. The evaluation process

consists of ablation studies and state-of-the-art comparisons.

The benchmark datasets we use are OTB-2013 [37], OTB-

2015 [38], VOT-2019 [18], LaSOT [8], UAV123 [29], and

GOT-10K [26] where there are 50, 100, 60, 280, 123, and 180

video sequences, respectively. We follow standard evaluation

protocols for comparison. On the OTB-2013 [37], OTB-

2015 [38], UAV123 [29], and LaSOT [8] datasets, we use

distance precision (Prec.) rates at a threshold of 20 pixels and

overlap success (AUC) rates. On the VOT-2018 [18] dataset,

we use expected average overlap (EAO), accuracy values (Av)

and robustness values (Rv). On the GOT-10K [26] dataset,

we evaluate the performance via average overlap (AO), and

success rates (SR) at overlap threshold of 0.5 and 0.75. Our

implementation will be made available to the public.

A. Implementation Details

a) Network Architecture: We use the pre-trained

ResNet18 [14] structure as the feature extraction backbone.

The size of the template image is the same as the search

region image, whose area is 5 times that of the target box.

The input images are reshaped as 288× 288× 3. Upsampling

network fuses the features from layer5, layer4, and layer3 and

outputs the 36× 36× 128 upsampled feature. The proposed

IBU module uses a transpose convolutional layer to upsample

the low-resolution search region feature, which doubles the

width and the height dimensions and reduces the channel

number by half. The CSCS module compresses the channel

dimension with a fixed compression ratio η, which is set as



0.5 in our experiments. The prediction head has two branches.

Each branch is composed of 5 convolutional layers. The

channel number of the hidden layers is 256. The outputs of

the prediction head are the 36× 36× 1 center prediction map

and the 36× 36× 4 regression map. The architecture of the

prediction head is shown in Fig. 6.

b) Training Stratagy: The parameters of the proposed

IBU module and CSCS module are set randomly in the

initialization process. Then we train the whole model end-

to-end. The training datasets we use are GOT-10K [26],

TrackingNet [30], COCO [27], and LaSOT [8]. As the two

branches of the siamese network share parameters, we only

use one branch during training. We set the parameters α, γ,

and τ of the focal hinge MSE loss as 0.9, 0.1, and 0.05 in our

experiments. The siamese network is trained on the training

video sequences by 60 epochs with an ADAM solver with

a learning rate decay of 0.2 every 15 epochs. The beginning

5 epochs are the warm-up process. An epoch includes 1000

iterations. The training batch size is set to 128. It takes 20

hours to train the model with four Nvidia GTX TITAN X

GPUs.

c) Online Tracking: The proposed algorithm fine-tunes

the template feature according to the initial frame. The offline

branch always uses the initial template to match the target.

The online branch that is consists of four convolutional layers

updates the online template every 10 frames or when the hard

negative samples occur. The channel numbers of the hidden

layers are 256. The features from layer4 are used by the online

branch. We extract the search region features centering at the

predicted target box center of the previous frame. The final

response map is the weighted addition of the offline center

prediction map and the online response map whose weights

are 0.3 and 0.7, respectively. For adding the offline and online

maps, we upsample the online response map to the same size

as the offline center prediction map first. The average speed

for online tracking is about 50 FPS with one Nvidia GTX

TITAN X GPU.

B. Ablation Studies

We do ablation studies on the OTB-2015 [38] dataset. Four

configurations are compared in Table. I. The first model does

not use the IBU module and the CSCS module, and only

extracts the layer4 features for the center prediction and the

regression. Compared with the first configuration, the second

model upsamples and concatenates the features from layer3,

layer4, and layer5 as the input of the prediction head. The

third model integrates the IBU modules, but without the CSCS

module in it. The fourth model is our final method, which

integrates both the IBU modules and the CSCS modules.

When the tracker only uses the layer4 features to predict

the target center and the bounding box, the AUC score and

the precision is 65.2% and 83.3%, respectively. The simple

feature fusion method which upsamples the features from the

different layers and concatenates them straightforward only

improves the tracking performance marginally. Compared with

the simple fusion method, the proposed feature fusion module

TABLE I
ABLATION STUDIES ON OTB-2015 DATASET. DISTANCE PRECISION

(PREC.) RATES AT A THRESHOLD OF 20 PIXELS AND OVERLAP SUCCESS

(AUC) RATES ARE USED TO EVALUATE THE PERFORMANCE.

Multi-layer IBU CSCS AUC↑ Prec.↑

0.652 0.833

X 0.659 0.844

X X 0.674 0.860

X X X 0.681 0.866

IBU improves the performance significantly by 2.2% in AUC

score and 2.7% in precision. Based on the model with the IBU

modules, the tracking performance can be improved further,

from 67.4% to 68.1% AUC score, by integrating the proposed

CSCS modules.

TABLE II
INFLUENCES OF DIFFERENT SAMPLE SELECTION METHODS FOR TRAINING

BOUNDING BOX REGRESSION. DISTANCE PRECISION (PREC.) RATES AT A

THRESHOLD OF 20 PIXELS AND OVERLAP SUCCESS (AUC) RATES ON

OTB-2015 ARE USED TO EVALUATE THE PERFORMANCE.

distance ratio AUC↑ Prec.↑

(a) - 0.5 0.673 0.862

(b) - 0.25 0.681 0.866

(c) 24 - 0.671 0.863

(d) 36 - 0.668 0.859

In Table II, we test the influences of the different methods

for selecting the samples that are used to train the bounding

box regression. The ’distance’ in this table represents using

an absolute distance threshold. ’ratio’ means using a ratio

to calculate the thresholds, related to the width and height

of the target box, for the horizontal and vertical directions.

According to Fig. 5, (a) means using all the points inside the

groundtruth. (b) represents using different distance thresholds

for the horizontal and the vertical directions with respect to the

size of the box. (c) defines the distance threshold as 24 pixels.

(d) defines the distance threshold as 36 pixels. Method (b) is

our final method. The distance thresholds of the horizontal and

vertical directions in this method are 0.25 times the width and

height of the target box, respectively.

Table. II compares four kinds of regression sample selection

methods shown in Fig. 5. The best result is obtained when we

set the ratio related to the box height and width as 0.25 to

calculate the distance thresholds. It is because this definition

takes the bounding box size and aspect ratio into account,

which can make the trained regression features more likely

locates at the target area and suppress the bad effect from the

background features during the training process.

C. Results on OTB Dataset

We compares our tracker IBFP with 9 trackers, including

CCOT [6], MDNet [31], ATOM [4], DiMP-18 [3], DaSi-

amRPN [46], TADT [24], GCT [11], GradNet [23], and

SiamFC-tri [7] on both the OTB-2015 [38] and OTB-2013 [37]

datasets. On the OTB-2015 [38] dataset, we draw the precision



Fig. 7. Precision plots and overlap success plots under different situations on OTB-2013 dataset.

plots and the success plots to compare the total tracking

performance under all the situations, as Fig. 8 shows. On the

OTB-2013 [37] dataset, we show the tracking performance

under the different situations and challenges in Fig. 7.

Fig. 8. Precision plots and overlap success plots on OTB-2015 dataset.

We use ResNet18 [14] as the backbone. Compared with

ATOM [4] and DiMP-18 [3] who also utilize ResNet18 [14] to

extract features, our tracker achieves 68.1% AUC score, higher

than them by 1.4% and 1.7%, respectively. According to Fig. 7,

our tracker can handle different situations well. Under the in-

plane rotation and the significant scale variation situations, our

tracker achieves a remarkable performance, which results from

that the IBU modules select and fuse the high-level feature

with more rotation invariance and the high-resolution low-level

feature adaptively.

D. Results on LaSOT Dataset

LaSOT [8] dataset has 280 test videos with 70 different

categories. We use the precision plots, normalized precision

plots, and success plots to evaluate the tracking performance.

We compare the performance of our tracker and some state-of-

the-art trackers on the huge dataset LaSOT [8] to demonstrate

the effectiveness. Fig. 9 illustrates the tracking results of

DiMP-18 [3], GlobalTrack [15], DaSiamRPN [46], ATOM [4],

SiamRPN++ [20], D3S [28], C-RPN [9], VITAL [32], GFS-

DCF [39], ECO [5], BACF [17], and our tracker IBFP in terms

of distance precision (Prec.) rates at a threshold of 20 pixels,

normalized precision, and overlap success (AUC) rates.

On the large dataset LaSOT [8], our tracker obtains 54.3%

AUC score and 53% Precision score, which is better than

ATOM [4] by 2.9% AUC score. Benefited from the effective

feature fusion method, the proposed tracker IBFP also outper-

forms GlobalTrack [15] which takes the whole frame as input

and SiamRPN++ [20] which integrates ResNet50 [14] as the

backbone, by 2.6% and 4.8% AUC scores, respectively. Com-

pared with other RPN-based trackers like DaSiamRPN [46]

and C-RPN [9], Our tracker also achieves better performance.

It is worth noting that the success rate of our tracker IBFP is

higher than that of other trackers significantly on the overlap

threshold period [0.5, 1.0]. It means our tracker can predict the

target bounding box more precisely, which results from fusing

the discriminative deep layer features and high-resolution

shallow layer features effectively.

We also compare the tracking performance of our tracker

IBFP with some state-of-the-art trackers under the different

situations and challenges on the LaSOT dataset. The results

in terms of AUC score are listed in Table. III. The situations

and challenges include illumination variation (IV), partial

occlusion (PO), deformation (DF), motion blur (MB), camera

motion (CM), rotation (RT), background clutter (BC), view-
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Fig. 9. Normalized precision plots, precision plots, and overlap success plots on LaSOT dataset.

TABLE III
TRACKING PERFORMANCE UNDER DIFFERENT SITUATIONS ON LASOT DATASET IN TERMS OF OVERLAP SUCCESS (AUC) RATES. THE COLOR RED AND

BLUE NOTATE THE BEST AND THE SECOND BEST RESULTS, RESPECTIVELY

BACF ECO GFSDCF VITAL C-RPN D3S SiamRPN++ ATOM-18 DaSiamRPN GlobalTrack DiMP-18 IBFP

IV 0.312 0.373 0.436 0.403 0.487 0.527 0.530 0.549 0.565 0.562 0.564 0.568

PO 0.222 0.290 0.334 0.361 0.432 0.445 0.466 0.474 0.483 0.491 0.500 0.517

DF 0.238 0.279 0.357 0.384 0.479 0.525 0.528 0.512 0.538 0.531 0.549 0.561

MB 0.246 0.305 0.366 0.363 0.413 0.463 0.442 0.494 0.491 0.497 0.529 0.523

CM 0.286 0.358 0.397 0.397 0.482 0.505 0.513 0.553 0.565 0.543 0.582 0.571

RT 0.224 0.285 0.345 0.371 0.438 0.472 0.485 0.483 0.493 0.510 0.522 0.523

BC 0.265 0.319 0.342 0.365 0.409 0.432 0.449 0.454 0.469 0.434 0.468 0.468

VC 0.254 0.317 0.334 0.339 0.405 0.425 0.444 0.455 0.477 0.511 0.506 0.512

SV 0.255 0.318 0.367 0.385 0.452 0.486 0.494 0.512 0.514 0.516 0.533 0.540

FO 0.188 0.254 0.274 0.301 0.348 0.355 0.366 0.427 0.421 0.438 0.454 0.442

FM 0.176 0.233 0.246 0.265 0.290 0.341 0.316 0.414 0.375 0.396 0.408 0.398

OV 0.181 0.239 0.295 0.304 0.365 0.404 0.416 0.446 0.469 0.499 0.487 0.490

LR 0.195 0.267 0.299 0.309 0.355 0.377 0.385 0.450 0.436 0.452 0.470 0.468

AR 0.228 0.288 0.345 0.358 0.435 0.471 0.472 0.497 0.494 0.507 0.522 0.531

point change (VC), scale variation (SV), full occlusion (FO),

fast motion (FM), out-of-view (OV), low resolution (LR), and

aspect ratio change (AR). Because the IBU modules utilize the

deep and shallow features in a more effective way, our tracker

IBFP achieves the best performance, 53.1% and 54% AUC,

when the aspect ratio change (AR) and the scale variation

(SV) are significant. Besides, the full use of the features

from different layers and the channel selection mechanism of

the CSCS modules also can help our tracker to handle the

challenges of the partial occlusion (PO), deformation (DF),

target rotation (RT), background clutter (BC), and viewpoint

change (VC).

E. Results on VOT Dataset

We evaluate our method on the VOT-2019 [18] dataset.

There are 60 sequences for evaluating the tracking perfor-

mance. We compare our tracker with some state-of-the-arts,

including TADT [24], SASiamRPN [13], MemDTC [40],

SPM [35], ROAM++ [41], and ATOM [4] in terms of expected

average overlap (EAO), accuracy values (Av) and robustness

values (Rv) in Table. VI. Our tracker IBFP achieves 0.287

EAO score on the VOT-2019 dataset. The tracking accuracy

value and robustness value of our tracker is 0.609 and 0.493,

respectively.

F. Results on UAV Dataset

UAV123 [29] dataset contains 123 video sequences that has

more than 110k frames from an aerial viewpoint. We list the

performance in terms of distance precision (Prec.) rates at a

threshold of 20 pixels and overlap success (AUC) rates on

the UAV123 [29] dataset of our tracker and some state-of-

the-art trackers in Table. IV, including ARCF [16], ECO [5],

SiamRPN [21], UPDT, DaSiamRPN [46], SiamRPN++ [20],

ATOM [4], and DiMP [3]. Our method achieves an AUC score



TABLE IV
STATE-OF-THE-ART COMPARISON ON UAV123 DATASET IN TERMS OF DISTANCE PRECISION (PREC.) RATES AT A THRESHOLD OF 20 PIXELS AND

OVERLAP SUCCESS (AUC) RATES. THE COLOR RED AND BLUE NOTATE THE BEST AND THE SECOND BEST RESULTS, RESPECTIVELY

ARCF ECO SiamRPN UPDT DaSiamRPN SiamRPN++ ATOM DiMP-18 DiMP-50 IBFP

AUC 0.47 0.525 0.527 0.545 0.586 0.613 0.642 0.643 0.653 0.644

Prec. 0.67 0.741 0.748 - 0.796 0.807 - - - 0.835

TABLE V
STATE-OF-THE-ART COMPARISON ON GOT-10K TEST SET IN TERMS OF AVERAGE OVERLAP (AO), AND SUCCESS RATES (SR) AT OVERLAP THRESHOLD

OF 0.5 AND 0.75. THE COLOR RED AND BLUE NOTATE THE BEST AND THE SECOND BEST RESULTS, RESPECTIVELY

MDNet ECO CCOT SiamFC SiamFCv2 DaSiamRPN ATOM DiMP-18 DiMP-50 IBFP

AO 0.299 0.316 0.325 0.348 0.374 0.444 0.556 0.579 0.611 0.614

SR0.50 0.303 0.309 0.328 0.353 0.404 0.536 0.634 0.672 0.717 0.716

SR0.75 0.099 0.111 0.107 0.098 0.144 0.220 0.402 0.446 0.492 0.499

TABLE VI
STATE-OF-THE-ART COMPARISON ON VOT2019 DATASET IN TERMS OF

EXPECTED AVERAGE OVERLAP (EAO), ACCURACY VALUES (AV) AND

ROBUSTNESS VALUES (RV). THE COLOR RED AND BLUE NOTATE THE

BEST AND THE SECOND BEST RESULTS, RESPECTIVELY

Tracker EAO Av Rv

TADT 0.207 0.516 0.677

MemDTC 0.228 0.485 0.587

SASiamRPN 0.253 0.559 0.492

SPM 0.275 0.577 0.507

ROAM++ 0.281 0.561 0.431

ATOM 0.292 0.603 0.411

IBFP 0.287 0.609 0.493

of 64.4%, which performs favorably against the state-of-the-

arts with about 50 FPS speed.

G. Results on GOT-10K Dataset

GOT-10K [26] dataset contains over 10,000 sequences, 180

of which are selected as the test sequences. The object classes

of the test sequences are all different from that in the training

set. For fair comparison, we only use the training set offered

by GOT-10K [26] dataset to train the model. The evaluation

results in terms of average overlap (AO), and success rates

(SR) at overlap threshold of 0.5 and 0.75 are shown in

Table. V. We compare the results of MDNet [31], ECO [5],

CCOT [6], SiamFC [2], SiamFCv2 [34], DaSiamRPN [46],

ATOM [4], DiMP [3], and our tracker IBFP. Our tracker get the

highest average overlap and success rates at threshold of 0.75.

Compared with the trackers with ResNet18 [14] backbone, our

tracker achieves 61.4% AO score, with 5.8% and 3.5% higher

than ATOM [4] and DiMP-18 [3]. On the GOT-10K [26] test

set, our tracker also outperforms DiMP-50 [3] which uses

ResNet50 [14] as the backbone in terms of AO score and

SR0.75 score.

H. Visualization

We show some visualization results of several state-of-the-

art trackers and our tracker in Fig. 10. The visualization frames

are from the sequences ’swing-10’, ’motorcycle-3’, ’deer-14’,

and ’hat-18’. We also visualize the intermediate and final

response maps of our tracker in Fig. 11. The intermediate

response maps are the average map through channels of the

response tensors from the two IBU modules. We take the

sequences ’Crowds’ and ’Human4’ as examples. From the

response maps of the first column, we can observe that the

response maps from the deep layer light a big area near the

targets. After the first step fusion via the IBU module, the

response maps in the second column become more focused,

while there are some clutter. Via using the second IBU module

to fuse and refine the features, the real target can be located

certainly and precisely, as the response maps in the third

column show.

V. CONCLUSION

Fusing the deep and shallow features is a reasonable way

to improve the tracking performance. The proposed instance-

based upsampling (IBU) module is a carefully designed feature

fusion method for the general visual tracking task, which is

used to mix the deep and shallow features in a series manner.

The IBU module can guide the tracker to search the target from

the low-resolution level to the high-resolution level. Taking

both the discriminative information from the deep features

and the precise location information from the shallow features,

the IBU module can suppress some distractors and locate the

target more precisely. By integrating the IBU modules, the

proposed tracker can fully use the guidelines from the deep

layer feature to locate the target at a high-resolution level. The

proposed compressed space channel selection (CSCS) module

works like cross attention, which re-weights the template

feature channels according to the current search region. Via the

CSCS module, the tracker can adjust the importance of each

feature channel and select some useful features to locate the

target on the basis of the search region. The impressive track-

ing performance on several public tracking datasets proves

the effectiveness of the IBU module and CSCS module. By

integrating the IBU and CSCS modules on the ResNet18 [14]
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Fig. 10. Visualization of the tracking bounding boxes of some state-of-the-art trackers.

Fig. 11. The intermediate and the final response maps of our tracker. The first column shows the average response map of the response tensor from the first
IBU module. The second column shows that from the second IBU module. The third column is the final response map. The last column shows the search
area image.

backbone, our tracker can achieve good performance with

about 50 FPS running speed.
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