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ABSTRACT

In this paper, we propose a new method for online multiple people tracking, which combines the detec-
tion process and the single object tracking process, and establishes the interactions between them. The
detector detects objects in the still images which ignores the sequential information. Meantime, the sin-
gle object tracker does not use the category semantic information during tracking. To take both the
sequential and semantic information into account, we exchange information among the detector and
the trackers. More specifically, the trackers deliver sequential information to the detector by providing
the detector with the extra proposals. The detector supplements each tracker with the robust semantic
information by using bounding box regression to modify the tracking result. Besides, the interactions also
happen among the trackers through the occlusion speculation, the perspective model interpretation and
the trajectory merging process. The experimental results demonstrate that the proposed algorithm per-
forms favorably against the state-of-the-art MOT methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Multiple object tracking (MOT) is an important task in com-
puter vision for its potential influence on many applications, such
as autonomous driving, robot navigation, and motion analysis. The
goal of MOT is to estimate the locations of targets in each frame of
a video and keep their specific identities consistent, to obtain their
trajectories. Conventionally, the MOT task is separated into detect-
ing and data association steps. Object patches are provided by a
detector, and matched with trajectories existed in the data associ-
ation step. The two steps are executed independently. In the view
of modeling methods, MOT algorithms can be separated to two
branches. One concerns about to simplify the MOT problem as an
abstract model whose optimal solution can be obtained by some
solvers. The simplified models include network-flows [44], k-
partite graph [43], and graph multi-cut [38], etc. Another branch
tries to model the MOT problem as complete as possible, and to
derive a good local optimal solution. For modeling the complex sit-
uations, complicated energy functions [26] are defined empirically,
or deep neural networks [28,37] are constructed to obtain a good
solution.

The conventional MOT frameworks, which detect objects in a
frame and then associate detections with the trajectories existed,
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depend heavily on the detection results. The wrong association
happens, once the detections are incorrect or missed. In fact, a tar-
get detected in the previous frame tends to be found near its latest
location in the current frame. To use this sequential information,
several algorithms [39,7] utilize single object tracking methods
to alleviate the influence of false or inaccuracy detections. In recent
years, the single object tracking methods have improved signifi-
cantly because of taking advantages of sequential information effi-
ciently. A target can be tracked accurately by the state-of-the-art
single object tracker [29,13] in most situations without the severe
occlusion and the frequent target deformation. Yet unfortunately,
the serious occlusion and the target deformation frequently hap-
pen in the MOT task, especially when the target is people. In such
a complex scene, it performs terribly to use the single object track-
ing method for every target simply in the MOT task. The tracking
drift and the scale bias happen easily, as shown in Fig. 1. These
tracking failure situations derive from the model updating method.
When updating the appearance model, the tracker uses the previ-
ous tracking results as positive examples. Then, the updated model
is employed to find the target in the current frame. However, the
accumulative error increases with the tracking process, which will
result in the tracking failure. We argue that the essential reason for
tracking drift of the single object tracker is the lack of the semantic
information about the target category. The tracker always tries to
find the patch similar to its appearance model the most, regardless
of the target category.
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Fig. 1. Inaccuracy tracking results and modified results. The tracking drift (a) and the scale bias (b) occur when adopting CF tracking directly in the MOT task. These problems

are fixed by our method (c) and (d).

Motivated by the above observations, we propose a method for
the online multiple people tracking task, which unites the tracker
of each target and the detector, called detector-tracker cloud. The
connection is built between the detector and the trackers, as well
as every tracker. In our method, trackers help the detector to find
some false negatives by providing the extra proposals with the
specific IDs. And the detector fine-tunes the tracking bounding
boxes via the category semantic information. Exchanging informa-
tion between the detector and each tracker comes from two rea-
sons: (1) The detector can supplement the category semantic
information to the tracker, and fine-tunes the bounding box more
precisely, which alleviates the accumulative error. (2) The trackers
can provide the detector with extra proposals to recover some false
negatives, which stabilizes the target trajectories. Besides, We pro-
pose a new perspective model. Through the construction and inter-
pretation of the perspective model, trackers influence each other
and control the size of the tracking bounding boxes in a reasonable
range. For data association, we separate the step into two stages.
Targets who are tracked associate the detections first, which is
easier and more reliable. And the rest detections are matched with
lost targets after that. Then, we further drop or merge redundant
trackers during the trajectory merging process.

The main contributions of our work can be summarized as:

e We propose a new method to solve online multiple people
tracking task, referred to detector-tracker cloud, which combi-
nes the single object tracker and the object detector by sharing
the category features and the sequential information to stabilize
the tracking trajectories.

e we propose an adaptive perspective model for helping the
tracker to select the correct target and keep the bounding box
size in a reasonable range.

e we design a new trajectory management method which
includes the re-ID based re-tracking process and the trajectory
merging process, to suppress the risk of the trajectory fragment
and the ID switch.

2. Related work
2.1. Multiple object tracking

Multiple object tracking algorithms can be classified into two
types in general. One type of methods simplify the MOT problem
to an abstract model which can be obtained the optimal solution.
Typically, some methods use network-flows [44,14,5] algorithm

to find global optimal trajectories association. Several other opti-
mization algorithms are also employed to search the optimal solu-
tion, such as k-partite graph [43,8], multi-cut [38], etc. Different
from the methods deriving the optimal solution via the simplified
models, another type of methods construct complex models to
approach to the reality, and get a good local optimal solution. For
approaching the reality, more complicated energy functions
[26,27] are defined for obtaining a better solution. Xiang et al.
[39] infers target states with Markov decision process. Milan
et al. [28] integrates data association, appearance model updating,
motion predicting and trajectory management in a unified RNN
architecture. Besides, deep networks also are used to encode differ-
ent information like appearance, motion and interaction [34], or
infer occlusion situation [7]. These previous works focus on how
to get better features to distinguish different targets and overcome
heavy occlusion. However, our work focus on how to build connec-
tions between detector and trackers.

2.2. Object detection

Object detection is developing rapidly, which is used in many
computer vision tasks as a basic technology. Faster-RCNN architec-
ture is one of the mainstream algorithms to solve the object detec-
tion [33], which uses a two-stage network. Another direction is
detecting objects in one stage [31,25], which inputs image into a
single network, and locates objects by regression directly. In our
work, we use a simple Faster-RCNN as the basic detector to encode
the category semantic information. It is certain that the algorithm
performance will be improved by a large margin if a better detector
is adopted. However, considering the object detection is not the
main topic of this paper, we just use a simple architecture as the
basic detector to demonstrate our idea.

2.3. Single object tracking in MOT

Recently, In MOT task, several works also try to use single object
tracking methods, such as TLD [39], CNN based tracking [7], parti-
cle filter tracking [32,35] and so on. A few works just use single
object tracking to generate initial short tracklets [40] or estimate
a candidate area [21]. To the best of our knowledge, there is no
study to focus on the interactions inside the MOT system. We
argue that each single object tracker connects with others instead
of keeps alone. Besides, trackers with sequential information and
detector with semantic information are complementary.



246 Z. Pi et al./ Neurocomputing 412 (2020) 244-251

3. Our approach
3.1. Overview

We propose a detector-trackers cloud system for multiple peo-
ple tracking. Faster-RCNN is used as the detector to detect persons
in each frame. For the tracking process, we generate a tracker for
every target detected by the detector. For each tracker, the basic
task is to track the object assigned to it. We employ one of the cor-
relation filter (CF) tracking methods to handle the basic task. Con-
sidering the efficiency, we employ the Sum of Template And Pixel-
wise LEarners (Staple) tracker as our basic single object tracker,
which operates at 80 fps. These trackers influence each other
through the occlusion speculation, the perspective model and the
trajectory merging step. The pipeline is shown in the Fig. 2.

3.2. Interactions between trackers and detector

We believe that the detector and trackers can help each other in
MOT task. From this base, we design the Interaction process
between the detector and trackers.

3.2.1. Detector helps trackers

The single object tracker is designed for the specific instance.
The lack of the category semantic information results in the less
robust and precise tracking bounding box. In the MOT task, there
are much more difficult situations than single object tracking, such
as frequent occlusion, more distractors and more background clut-
ters, etc. Tracking drift often occurs without the category semantic
information, so we use the bounding box regression to fine-tune
the tracking bounding boxes that the trackers output.

For the targets in tracked state, We divide the conventional
matching task into three steps: The first step is to track every tar-
get in tracked state with the CF tracker. The second is to modify the
tracking bounding boxes with the category semantic features via
the bounding box regression; The third step is to match the mod-
ified tracking bounding boxes and the candidate patches from the
detector, and choose the higher confidence region as the target
position. The tracking bounding boxes provided by the CF trackers
are not precise enough due to the lack of the category semantic
information, so we use the deep network shown in the Fig. 3basic
net) to extract the deep features with the category semantic infor-
mation. The ROI pooling layer is employed to crop the deep fea-
tures of the patches localized by the CF trackers. Then, the
tracking bounding boxes are fine-tuned by the regression process
to obtain the more reliable bounding boxes (see Fig. 4).

Perspective

model

) ,
Trajectory
management
! T \I
2 .

—§ —

unmatched

Fig. 2. Tracking pipeline. The trackers locate the targets first, and provide the
tracking bounding boxes as the extra proposals of the detector. The detector fine-
tunes all the original and extra proposals via the bounding box regression branch.
Then, the tracking bounding boxes are matched with the detection bounding boxes.
The matched boxes are sent to the perspective model for the further select. Then,
the trajectory management is implemented based on all the tracked targets,
unmatched detection boxes and lost targets.

3.2.2. Trackers help detector

The detector is designed to detect targets in the still images. Via
learning the category semantic information, it can localize the targets
with the precise bounding boxes. However, the detector is not
designed for the specific instance and does not use the motion consis-
tency. Sometimes, the trajectories are not continuous because of the
targets being wrongly suppressed, if we only utilize the detector to
localize the targets. It is clear that the target exists at the position near
where he shows in the previous frame. Hence, we add the tracking
results as extra proposals for the detector, which improves the detec-
tion quality. Notably, these extra proposals are different from normal
proposals because of their id information (each of them corresponds
to aspecific target). What's more, they are, generally, closer to real tar-
gets than normal proposals due to the continuous tracking process.
There are two advantages of the extra proposals: First, the real targets
can be located easily by the detector according to them. Second, They
can be used to localize the specific targets before the conventional
matching process. The trackers can not only provide more accurate
proposals for the detector, but also match detection bounding boxes
for the targets in tracked, called the stage one match.

3.2.3. Re-tracking the lost targets

When a target is lost, the corresponding tracker tries to find it
again in the next frames among the candidate patches provided
by the detector, which is called the stage two match. We use three
convolution layers and three fully connected layers to extract the
feature vectors for the candidate patches, which is shown in
Fig. 3 (detail net). Afterwards, these feature vectors are used to
compute the distance metric with the feature vectors of the trajec-
tories that are lost. We calculate and update the feature vector of a
trajectory every frame if the target is tracked by the tracker.
Assuming that the ith trajectory t; who is tracked continuously
from the frame a, matches with the kth candidate patch in the
frame t, we describe the updating formula as

X =(1— o) *xF!

+ X, (M
where x¢* is the feature vector of target i who is tracked continu-
ously, x}, is the feature vector of an image patch matched with t;
in the current frame, and o is the weight calculated according to
the confidence scores of the trajectory in the past and the current
tracking result. If the current tracking result is credible, we set a
big weight for the new feature vector to update the target feature
vector. we define the w

t
W= % (2)
SE 4+ Sik
S;,k _ P]r(ec Z;:][Chv (3)
Sa:t—] _ 1535] (4)
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where S™! is the confidence scores of the trajectory t; until t — 1
frame and S}, is the confidence score of its current tracking result. S/
represents the tracking result confidence score in each frame of the tra-
jectory being tracked continuously. P is probability calculated by
basic net. P,’-T‘,f“” is the cosine affinity between the trajectory and detec-
tion feature vectors:
match x?:FlXL
P e T )
When the target is lost in frame t, the feature vector x; remains
unchanged and is used to calculate cosine affinities with feature vec-
tors of candidate patches in following frames. The tracker finds its tar-
get again when the maximum cosine affinity is larger than a threshold.
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Fig. 3. Basic net and detail net. The basic net is used to encode the category semantic information and detect the people in the frames. The detail net is employed to
distinguish the different persons. The parameters of the two networks are partially shared.
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Fig. 4. Interactions between trackers. When several trackers are close to each other, these trackers speculate their occlusion situations by comparing the confidence scores of
tracking results. Besides, every tracker with high confidence tracking result updates the perspective model of a grid where the bottom-center point of the bounding box is.

The stage two match is executed after the stage one match.
Actually, the stage one match is easier, due to the use of the
sequential information. The stage one match rules out some candi-
date patches, which simplifies the match process in the stage two.

3.3. Interactions between trackers

The trackers track their targets in the same scene. We argue that
these trackers can share the information they obtain, which
improves the whole multiple object tracking task. The trackers
can speculate occlusion situations and perceive the scene that they
stay in through sharing information.

3.3.1. Speculating occlusion

When some trackers get close to each other, we introduce
information exchange among the subgroup of trackers. The con-
fidence of a tracking result is not only depended by a single
tracker, but also influenced by the trackers near it. The occlusion
between targets happened gradually. For this reason, the tracker
whose target is occluded will adapt to another target gradually
with the tracking and updating process. Then, the tracking drift
occurs. We define the tracking confidence of a tracker as For-
mula 3, and compare the tracking results of different trackers
near each other. When the IOU between two tracking results is

large, we consider the tracking result with lower confidence(re-
gardless the absolute score) is occluded by the other, and the
tracker loses the target.

3.3.2. Perceiving scene

We propose the perceiving scene process. Considering that the
height of people is in a small range, and the viewpoint of a camera
is only with the small variation, the perspective relationship in a
scene can be modeled. We let the trackers perceive the perspective
relationship with themselves during the tracking process. We sep-
arate the scene into some grids with the same size, and build a
gaussian-like model for every grid to describe the reasonableness
of the bounding boxes in the grid according to their heights. We
call it perspective model. And in each grid

2

Prers = €777 (6)
where h is the height of bounding box of a target. i and ¢ are expec-
tation and variance of the gaussian-like model, which could be var-
ious in different grids.

The perspective model is updated during the tracking process.
In every frame, the tracking bounding boxes with the high confi-
dence scores are used for updating the gaussian-like models in
the grids where they are. Derived from the conjugate prior distri-
bution, the updating formulas for y and o are
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where o and f are the parameters of gaussian distribution’s conju-
gate prior distribution (inverse gamma distribution). h is the height
of a bounding box. N is the total number of samples in one grid. n is
the number of new samples for one grid in the current frame.

The scene information is used to modify the confidence score of
the tracking results. We divide the tracking results into three parts
with their confidence scores, the correct (>0.7), the incorrect
(<0.2) and the undetermined. For the undetermined tracking
results, we define the method to modify the confidence scores of
the tracking results as follows:

1
o (1 o 0.5)5,

where S is the original tracking confidence score. 7 is the modifying
factor. The bigger # value means the modification is more signifi-
cant. It is decide that a tracking result is kept or abandoned after
the modification step. These adaptive gaussian-like models tend
to select the targets with the normal size and suppress those abnor-
mal bounding boxes. The normal sizes of the different locations are
variable in a scene. By using the adaptive perspective model, we
control the size of the bounding boxes in a reasonable range.

(12)

3.3.3. Merging trackers

Compared with detecting a person, it needs more detail infor-
mation to re-track a person by matching candidate detections with
the lost targets. An example is shown in Fig. 5, a person can be
found by the detector when he occluded by something or someone
with only the head and a little part of body showing. However, It is
hard to recognize who he is in this situation due to the lack of the
detail information. In the online MOT task, the re-tracking process
is executed frequently due to the targets are lost caused by occlu-
sion. When a missed target shows up from behind the shelter grad-
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ually, the detector tends to detect him keeping one step ahead of
the tracker who needs to recognize the id of the detection. It is con-
fused for trackers to figure out that the new detections are their
targets or not, when these detections are still occluded seriously
(can be detected by the detector, though). In this situation, these
lost targets are initialized as the new targets with high probabili-
ties. To solve this problem, we calculate the affinities between
the lost targets and the new targets. If the affinity between an
old target and a new target is bigger than the merging threshold
thy,, these two trackers are merged as one. The new trackers also
update the trajectory feature vectors with Formula 1, and the affin-
ity of two trackers is calculated by the cosine similarity between
their trajectory feature vectors.

3.4. Trajectories management

Another problem in the MOT is to manage trajectories, includ-
ing generating new trajectories and finishing invalid trajectories.
A new target t" is initialized if a detection with high detection
score and low overlaps with all the existed targets. To suppress
false positive detections, the new target will be abandoned if it
cannot be tracked successfully in the first T;,; frames. For the tar-
get termination, We terminate the targets who are lost for a long
time T, or go beyond the field of the view.

4. Implementation details

The CNN used to extract features and detect objects is illus-
trated in Fig. 3. We employ the first 12 layers(before Conv4_1) of
VGG16 as the shared CNN layers. The basic net and the detail net
are with the same architecture and different parameters in the
additional 3 convolution layers. Then, the basic net finishes bound-
ing box regression and classification as the same as the standard
Faster-RCNN. The detail net extracts the feature vectors of the
patches, which are used to distinguish the different targets,
through 3 fully connected layers. We train the shared CNN layers
and the basic net with the training process of the Faster-RCNN,
which detects people only. Then, the detail net is trained to classify
person id with the shared CNN layers fixed. All the training images
from the MOT16 training set without the additional data.

We set the parameters Ti;; and T as 3 and 200, separately.
The tracker is considered as the new (may be merged with old

1 4 Score

0.6 +-----3

04 4

0.2 4

0 1

= Detection score

1

e Matching score

1

Fig. 5. Merging a wrong new target with an old one. 11th target is lost because of occlusion. When he shows up from behind the shelter, the detector gets a high detection

score before the 11th tracker gets a high matching score.
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Fig. 6. The performance analysis of our algorithm on training set of MOT16 in terms of MOTA.

trackers), if its trajectory is shorter than Ty, Which is set as 5. The
merging threshold th,, is 0.6. When being tracked, a target is lost if
the confidence score of the tracking result is lower than 0.6. In the
stage one match, a detection and a tracking result are matched
with >0.5 IoU. In the stage two match, a lost target and a detection
are matched when the affinity score is larger than 0.6. In the per-
spective model, we initialize o« and g with 2 and 900. # is set as 1.5.

5. Experimental results
5.1. Datasets

Our online MOT algorithm is evaluated in the public available
MOT16 and MOT17 benchmarks. These two benchmarks contain
14 video sequences (7 for training and 7 for testing) in uncon-
strained environments. Situations like camera shaking, crowded
environment, and different perspectives are included. We train
our CNN architecture with the training sequences and compare
the performance with various state-of-the-art MOT algorithms in
the testing set. Then, we do ablation studies in the MOT16 training
set.

5.2. Evaluation metrics

The widely used CLEAR MOT metrics [4] are adopted to evaluate
the performance of multiple object tracking algorithm. These
include Multiple Object Tracking Accuracy (MOTA), Multiple
Object Tracking Precision (MOTP), the total number of False Posi-
tives (FP), the total number of False Negatives (FN) and the total
number of ID Switches (IDS). The metrics defined in [24] are also
used, which is composed by Mostly Track targets(MT, percentage
of ground truth objects who trajectories are covered by the track-
ing output for at least 80%), Mostly Lost targets (ML, percentage of

Table 1

ground truth objects who trajectories are covered by the tracking
output less than 20%), and the total number of times a trajectory
is Fragmented (Frag).

5.3. Ablation studies

We analyze the influence of each part of our framework in this
section. The baseline is doing detection and data association sepa-
rately without any interaction between the detector and trackers,
which is noted by Al. A2 represents to connect the detector and
each tracker, but without interaction between every two trackers.
A3 represents to add interaction between trackers based on the
baseline. And A4 is the whole algorithm.

The performance shown in Fig. 6 is evaluated with MOT16
training set according to MOTA metric, which is a good estimation
for the overall performance of MOT algorithms. A2 is better than
the baseline A1, which demonstrates the effect of interaction
between detector and each tracker.That is to say, it is meaningful
to deliver semantic information from detector to trackers and sup-
plement sequential information from trackers to detector. The bet-
ter performance of A3 compared to Al shows that connecting
trackers is also useful, which proves the effectiveness of under-
standing the environment. Algorithm A4 with all interaction paths
obtains the best performance with 8.6% improvement in MOTA
compared with the baseline A1, which demonstrates the effective-
ness of sharing information between the detector and the trackers
instead of doing detection and data association separately.

5.4. Evaluation on testing set

For the comparisons with the other algorithms, we use the pub-
lic detection results provided by the benchmarks. Our algorithm,
named DTCloud is evaluated in the MOT16 and MOT17 bench-

Tracking performance on the testing sequences of MOT16 benchmark. The results are divided into two groups, i.e. online and offline. The best results of online and offline methods
are denoted by red and blue, respectively. The symbol 1’ means the higher is better and | means the lower is better.

Method Mode MOTA{ MOTP?} MT] ML| FP| FN|
DP_NMS[30] offline 26.2% 76.3% 4.1% 67.5% 3689 130557
SMOTI[9] offline 29.7% 75.2% 5.3% 47.7% 17426 107552
CEM[26] offline 33.2% 75.8% 7.8% 54.4% 6837 114322
LINF1[10] offline 41.1% 74.8% 11.6% 51.3% 7896 99224
QuadCNN[37] offline 44.1% 76.4% 14.6% 44.9% 6388 94775
MHT_DAM][19] offline 45.8% 76.3% 16.2% 43.2% 6412 91758
NOMT]6] offline 46.4% 76.6% 18.3% 41.4% 9753 87565
NLLMPa[23] offline 47.6% 78.5% 17.0% 40.4% 5844 89093
LMP[38] offline 48.8% 79.0% 18.2% 40.1% 6654 86245
oICF[18] online 43.2% 74.3% 11.3% 48.5% 6651 96515
STAM16[7] online 46.0% 74.9% 14.6% 43.6% 6895 91117
AMIR[34] online 47.2% 75.8% 14.0% 41.6% 2681 92856
Ours online 49.0% 75.6% 15.8% 37.9% 4116 87973
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Table 2

Tracking performance on the testing sequences of MOT17 benchmark. The results are divided into two groups, i.e. online and offline. The best results of online and offline methods
are denoted by red and blue, respectively. The symbol '1" means the higher is better and | means the lower is better.

Method Mode MOTA? MOTP] MT? ML| FP| FN|

LM_NN[1] offline 45.1% 78.9% 14.8% 46.2% 10834 296451
MHT_bLSTM[20] offline 47.5% 77.5% 18.2% 41.7% 25981 268042
TLMHT[36] offline 50.6% 77.6% 17.6% 43.4% 22213 255030
Jjcc[17] offline 51.2% 75.9% 20.9% 37.0% 25937 247822
JBNOTJ[15] offline 52.6% 77.1% 19.7% 35.8% 31572 232659
HISP_DAL[2] online 45.4% 77.3% 14.8% 39.2% 21820 277473
MASS[16] online 46.9% 76.1% 16.9% 36.3% 25733 269116
PHD_GSDL[12] online 48.0% 77.2% 17.1% 35.6% 23199 265954
AM_ADM|[22] online 48.1% 76.7% 13.4% 39.7% 25061 265495
DMAN[45] online 48.2% 75.7% 13.4% 39.7% 26218 263608
HAM_SADF[42] online 48.3% 77.2% 17.1% 41.7% 20967 269038
MTDF[11] online 49.6% 75.5% 18.9% 33.1% 37124 241768
STRN[41] online 50.9% 75.6% 18.9% 33.8% 25295 249365
Tracktor++[3] online 53.5% 78.0% 19.5% 36.6% 12201 248047
Ours online 51.7% 77.4% 19.6% 32.4% 25058 247465

marks, and compared with the other state-of-the-art MOT algo- Acknowledgements

rithms. The performances are shown in the Tables 1 and 2,
respectively.

On the MOT16 benchmark, our method achieves the best per-
formance on the MOTA, MT, ML, and FN metrics compared to the
online methods, and also outperforms the best offline methods
LMP with 0.2% MOTA. As we can see from the Table 1, our method
improves 1.8% MOTA compared to the second best online algo-
rithm AMIR.

As shown in the Table 2, on the MOT17 benchmark, compared
to all the online methods, our method achieves the second best
performance on the MOTA and MOTP metrics, and the best perfor-
mance on the MT and ML metrics.

6. Conclusions

In this paper, we propose a new algorithm with the interactions
between the detector and the trackers for the online multiple peo-
ple tracking task. We adopt the correlation filter tracker to provide
the detector with the sequential information. We use the category
semantic information to modify the tracking results of the trackers,
which demonstrates the importance of the category semantic
information in the MOT task. We also establish a perspective
model to evaluate the reasonableness of the tracking results and
control the size of the bounding boxes in a reasonable range. The
ablation studies prove it is useful to exchange the information
inside the MOT system. And the evaluation results on the testing
set of the MOT16 and MOT17 demonstrate the effectiveness of
our algorithm.
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